Tag Archives: astrophysics

Behind the Science: Hyperspectroscopy

We spend a lot of time here at the BSR talking about all kinds of awesome scientific findings.  But reporting your discoveries is only a small fraction of the life of a scientist.  The large majority of our time is spent finding problems and using tools to solve those problems.  Personally, I find that one of the coolest things about science isn’t in the final discovery, but in all the ingenious ways that we try to reach up with that discovery.

alignleft

As such, this is the first in an ongoing column that talks about the actual tools that scientists use in order to understand the world.  This might be anything from mathematical concepts to cutting-edge hardware to clever uses of proteins and biology.  When you begin to understand the tools that scientists use, you get a unique glimpse into the immense challenge that any scientist faces: attempting to find truth in an incredibly noisy and complicated universe, with remarkably few ways to actually do this.

Hyperspectroscopy: not your grandpa’s backyard telescope

And so, I want to start off this series with a technique that has found use in everything from astrophysics to geology.  It’s called hyperspectroscopy, and it aims to identify objects based solely off of the light information that they emit into the world.  At this point you might say, “Yeah, that’s a telescope, so what”?  The trick here lies in the fact that there’s much more to light than wavelengths we can actually see.
READ MORE ARTICLES

Berkeley researcher Saul Perlmutter wins the Nobel prize in physics

Berkeley Labs has been abuzz with excitement over Tuesday morning’s announcement that LBL and UC Berkeley astrophysicist Saul Perlmutter won this year’s Nobel prize in physics, most notably for his research into dark energy and the accelerating expansion of the universe.  Saul is the 11th LBL scientist and 9th UC Berkeley faculty member to be awarded a Nobel prize, and he brings UC Berkeley’s running total of Nobel prizes to a whopping 22.

Earlier this year, I attended a lecture that Perlmutter gave to a public audience at the International House entitled “Stalking Dark Energy and the Mystery of the Accelerating Universe.” Every seat was taken, but that didn’t stop overflow attendees from sitting in the aisles and peaking through the doors. The rock star treatment was a testament to the public’s interest in Saul and his fascinating research topic.

It has been known for some time that the universe is expanding, but whether or not it would eventually stop growing had long remained an open question.  One popular theory at the time was that the expansion universe would eventually stall out due to the inward pull of gravitational forces. But Perlmutter surprised the scientific community by showing – through the observance of light from supernovas – that not only would the universe continue to expand, but that it would do so at an accelerating rate. For the universe to accelerate outward past the collapsing force of gravity, there must be another force propelling it away.  That force is what we now call dark energy, the “mysterious something” that comprises 73% of our universe.

Congratulations to Saul.  A comment given by Bob Cahn, head of the cosmology group at LBL, sums it up nicely: “This is the biggest discovery in the history of science, and will remain so forever, since it only leaves 25% for everyone else.”
READ MORE ARTICLES